PAGE  
5

Union College









    Spring 2016

Astronomy 50 Lab:  Measuring Masses
Introduction


In the late 1600s, Isaac Newton developed a theory to explain the motions of the planets.  He speculated that the force of gravity, the same force that causes the apple to fall from the tree to the ground, acts between the Earth and Moon, and between the Sun and planets.  He derived an equation, called Newton’s Universal Law of Gravitation, which can be applied to all of these situations.  A key aspect of gravity is that its strength depends on the masses of the bodies.  Therefore, by measuring a body’s gravitational effect on another body, one can obtain a measure of the first body’s mass. 

 
In this lab, you will use the equation for Newton’s Universal Law of Gravitation and data about the orbits of other bodies to obtain measures of the masses of the Earth, the Sun, and Jupiter.

Equations to infer mass.

According the Newton’s Universal Law of Gravitation and Newton’s laws of motion, if a body undergoes a change of motion described by acceleration a (in meters per second per second) due to another body’s gravity, then the mass of the other body, in kg, is given by

M = a d2 / G,





(1)
where G is Newton’s Universal Gravitation constant and is equal to 6.67x10-11 m3/(kg s2), and d is the distance between the centers of the two bodies in meters.  

Part I Earth’s Mass

Let’s consider the apple falling to the ground from the tree.  We know that all bodies fall to the ground at the same rate, and this fall is described by an acceleration of 9.81 m/s per second.  This means that if an object is dropped from a tall building (and we could ignore the effects of air resistance), after one second of falling, that body’s speed will have increased by 9.8 m/s.  Now, since this acceleration is due to the gravity of the Earth, we can use this to calculate the mass of the Earth.  The distance between the center of the apple and the center of the Earth is, essentially, the radius of the Earth (the extra distance from the Earth’s surface to the apple is so small in comparison to the Earth’s radius that we can set d = Earth’s radius).  

So, look up the Earth’s diameter in Ast50 Lab Journal, Vol I, divide by 2 to get the radius.  Put this value in for d in Equation 1, and put in the value for G and put in 9.81 for a and do the calculation to get a measure of the Earth’s mass (in kg).
MEarth inferred from falling apple = ____________________ kg

The Earth’s gravity also is responsible for keeping the Moon in its orbit.  The acceleration of a body moving in circle is given by

a (of circular motion) = 42r/P2,




(2)

where r is the radius of the circle and P is the period of the circular motion.  For a body in orbit about another, much larger body, we can insert this expression for a in Equation (1), and manipulate to give
M = 79.3 (d3 / P2),





(3)

where M is in kg, d is in meters and P is in days.  

Equation 3 will be a very useful equation for the rest of this lab.   When you use it, remember that d must in meters and P is days, and this gives the mass, M, in kg.
Let’s now apply this to the Moon in its orbit.  For the distance of the Moon from the Earth see Ast50 Lab Journal Vol II, and for the period use the Moon’s orbital period see Vol VI.  Substitute in these values to solve for the mass of the Earth

MEarth inferred from Moon’s orbit = ____________________ kg.

How does this value of the Earth’s mass compare with that calculated from the rate of fall of an apple?  Among Newton’s major contributions to humanity’s understanding of nature was his law of universality, which stated that the same laws of physics apply in space as on Earth.  With accurate values of the Moon’s orbit, Newton could show that both the fall of the apple and the orbit of the Moon could be explained by the same force due to the Earth.

Part II: Mass of the Sun


We can, now, apply Equation 3 to Earth’s orbit to infer the mass of the Sun.  Use the distance of the Earth from the Sun reported in Ast50 Lab Journal Vol II, and the Earth’s orbital period is 365 days.  



MSun inferred from Earth’s orbit = _____________________ kg

Part III: The Mass of Jupiter


Finally, we will now use the orbit of a moon of Jupiter to calculate Jupiter’s mass.  Of course, we need, first to determine the details of a moon’s orbit.  This can be done from the Earth by taking a series of pictures of the Jupiter system through a telescope.  By watching and measuring the motion of one of Jupiter’s moons, the moon’s orbital radius and period can be calculated (and from this, you can calculate Jupiter’s mass using Equation 3).  We could take these pictures ourselves using Union’s telescope, but this would require at least one (preferably two) all-night observation sessions.  In lieu of waiting for a clear night and staying up all night to take data, we will use computer software that simulates data taken by a telescope similar to Union’s.  With this software, you can watch and measure the orbital progression of each of Jupiter’s Galilean moons as seen from Earth, as described below.  

Procedure – The Orbit of Io


 If you look through a telescope at Jupiter, you’ll see something like: 
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The moons appear to be lined up because we are looking edge-on to the orbital plane of the moons of Jupiter.  As time goes by, the moons will move about Jupiter.  While the moons move in roughly circular orbits, you can only see the perpendicular distance of the moon to the line of sight between Jupiter and the Earth (see Figure 1). 
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Figure 1
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Therefore, if you plot the perpendicular distance of the moon on the y-axis and time x-axis you should see a curve that goes up and down (like a sine curve) (see Figure 2).  By taking enough measurements of the position of a moon, you can fit a sine curve to the data.  The maximum value of the sine curve occurs when the distance we see is the entire distance between the moon and Jupiter.  And the period of the sine curve equals the period of the orbit.  Once you know the radius and period of the orbit of the moon, you can use Equation 3 to determine the mass of Jupiter.

Figure 2: Expected variation in apparent position in time. The 0 line on the y-axis is the position of Jupiter.

Procedure – CLEA Jupiter Software Progam

The Jupiter program simulates the operation of an automatically controlled telescope with a CCD camera that provides a digital image on a computer monitor.  It is realistic in all important ways, and using it will give you a good feel for how astronomers collect data from digital images.  The computer simulation shows the moons to you as they would appear if you were to look through a telescope at the specified time.

Instructions for using the Jupiter program

· Follow the instructor’s directions to open the CLEA program. 

· Select File...LogIn from the menu bar on the opening screen.   Enter your name and your partner’s name and click OK.  

· Select File...Run from the menu bar.  Enter the start date (tonight) and current time in Universal Time = Local Time plus 4 hours. Use a 24-hour clock. Click OK.

· Before running the simulation, select  File...Timing from the menu bar. Change the Observation Interval (Hours) to 1.00 hour and click OK. 

· The display shows Jupiter and its four Galilean moons as they would appear, at the particular date and time stated in the lower left corner, seen through a telescope on Earth.  We will use Io, the innermost moon. Find Io on the display by clicking on each moon.  If the moon’s name does not appear in the lower right corner, you did not center the cursor on the moon; try again.  Keep in mind that Io, though it is the moon closest to Jupiter, does not always appear closest to Jupiter on the display (why not?).  You can view the display in four magnifications by clicking on the 100X, 200X, 300X, 400X buttons at the bottom of the screen.  For greatest ease and accuracy of orbital measurements click on the 400X button.

· Click on Io, and note that its position on the display is given in the lower right corner under its name.  The top two numbers give the X-Y position of the moon in pixels and the bottom number is the perpendicular distance, in units of Jupiter’s diameter, as well as an E or W to signify whether it is east or west of Jupiter.  Record the Universal Time and the perpendicular distance of Io on your observation sheet, using positive numbers for measurements west of Jupiter and negative numbers for east (for example, record X=2.75E as –2.75).

· Hit Next to make the next measurement.  Note that, as in reality, at some random times the observation will be clouded out; if this happens, just enter “clouds” on your data table for that date and time. (There is a bug in the program that may produce clouds for multiple times. If this happens, hit Next until the clouds disappear, then go back to the File...Run and change the time to the hour just after you had clouds.) When Io goes behind Jupiter (so that it is not visible from Earth), enter “behind Jupiter” on your table.  Continue taking measurements until you hit your stop time (indicating the Sun has come up!).  You’ve completed your first night of observations.

· Go to the next night of observations using File...Set Observation Date. Enter the start date and time for observation night #2, and click on OK.  Take the second set of measurements.

Data Analysis

Once you have recorded data from both nights of observation, you are ready to analyze your data.  First make a plot of perpendicular distance versus time.  You can choose to plot your data by hand or using Excel.  Either way, it is most convenient for the analysis to plot distance versus time in hours rather than distance versus date and time.  Conveniently the Hour # column of your data table is already set up; note that 24 hours pass between the start times of nights #1 and #2, so night #2 begins with hour 24.
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Your plot will look something like this:

Recall the plot of Io’s motion should look like a sine curve.  Though your plot has a few holes in it (why?) you should still see the general shape of a sine curve.  Draw on your graph (or the printout of your graph if you’ve used Excel) the sine curve that best fits your data.  Once your sine curve is complete, Io’s orbital period and radius can be extracted from it.  The period is the time between two maxima and the radius is its maximum apparent position eastward or westward.  Convert the orbital period from hours into days.

You also need to convert the orbital radius from Jupiter diameters into meters.  What quantity would you need to measure in order to determine this conversion? How might you obtain this quantity? The conversion is given on your observation sheet. 
Calculate the mass of Jupiter using Equation 3.

MJupiter = ____________________________ kg

Material from Part III partly extracted from CLEA Jupiter Student Manual

Data Table for the Mass of Jupiter
     
Observation Night #1



Observation Night #2

Start:
Date





Start:
Date






Time






Time





End: 
Date





End: 
Date






Time






Time





	
	
	
	

	
	 Time
	Hour #
	Perpendicular

	
	(UT)
	
	Distance (JD)

	Observation 
	
	0
	

	Night #1
	
	1
	

	
	
	2
	

	
	
	3
	

	
	
	4
	

	
	
	5
	

	
	
	6
	

	
	
	7
	

	
	
	8
	

	Observation
	
	24
	

	Night #2
	
	25
	

	
	
	26
	

	
	
	27
	

	
	
	28
	

	
	
	29
	

	
	
	30
	

	
	
	31
	

	
	
	32
	


Orbital Period:


     hrs.


Orbital Radius:

    JD

Orbital Period:


     days

Orbital Radius:

     m









(Note: 1 JD = 1.43 x 108 m)
Questions to Consider for Discussion
1. How does your result for Jupiter's mass compare with the accepted value (give source of value)? Give reasons which might account for any possible discrepancy.

2.  How does the inferred mass of Jupiter compare to that of the Sun?  to the Earth?  Describe these three bodies in terms of their relative masses.  Which is most likely to be at the center of the Solar System?
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